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Abstract. We present in this paper a thermostatistical model of formtion of viveous BzOl 
which is based on 3 description of agglomeration of BO3 triangles resulting in medium-range 
clusters and on the construction of the p ~ i t i o n  function related to the space of all possible 
pathways leading to this set of clusters. With one fitfed parameter which is the boroxol formation 
energy of 5.3+0.7 kcal mol-’, the model predicts the usual shape of the internal energy function 
and the heat capacity cuwes, 35 well as the fraction of boroxol rings of 83%. In the last Section, 
we investigate the structural evolution of molten BzOs during the glass transition process. 

1. Introduction 

The boron oxide is one of the oldest known glass-forming materials. The very easy 
production of this compound and the fact that this glass is one of those supporting the basic 
‘continuous random network’ model of Zachariasen [I], have led to numerous studies, both 
theoretical and experimental, in various fields of investigation [2]. 

The stoichiometry of vitreous boron oxide (a In-VI compound) suggested long ago 
that its structure could be represented as a three-dimensional continuous random network 
(CRN) with BO3 triangles, which was confirmed by means of x-ray and neutron diffraction 
[3. 41. Indeed, the diffraction patterns show two very sharp peaks at 1.37 and 2.37 A, 
corresponding to the B-O and 0-0 distances in the equilateral BO, triangle, whereas other 
much broader peaks clearly suggest that there are no edge-sharing units in the glass (like a 
four-membered ring, BzOj), whereas considerable evidence was obtained for the existence of 
larger structural groups, namely six-membered rings B306, called boroxol rings, composed 
of three corner-connected BO3 triangles (figure 1). This assumption was later confirmed by 
the analysis of Raman spectra which exhibit a high vibrational peak at SOS cm-I (attributed 
to the breathing mode of the oxygens inside the boroxol rings [5,  61) and whose intensity 
and sharpness is comparable to those of usual crystals, suggesting that the network is mainly 
composed of randomly oriented boroxol rings connected by oxygen atoms or BO3 triangles. 

Several other experiences realized during the past fifteen years also seem to confirm 
the hypothesis. Jellison and co-workers who applied 170 NMR spectroscopy to v-Bz03, 
constructed a model of oxygen sites inside and outside boroxol rings, which explained that 
the best agreement with experiment can be obtained assuming that as many as 83% of the 
borons are trapped inside the boroxol rings [7]. 

0953-8984B5/428035+181619.50 @ 1995 IOP Publishing Ltd SO35 
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I8O enriched compounds have also been analyzed in order to show that the breathing 
mode of the oxygens inside the boroxol rings at 808 cm-' is strongly modified by the isotopic 
substitution and follows the isotope rate [SI. Similar work has been done on vitreous and 
molten B20, by Walrafen et nl investigating especially the temperature dependence of the 
integrated Raman intensity of the 808 cm-' peak [9]. They have observed that the sharp 
peak disappears with increasing temperature, suggesting a general breakdown of the boroxol 
groups in the liquid. These authors have also shown that the formation of a boroxol ring 
might be energetically favoured and have measured a corresponding formation energy of 
5 kcal mol-' [lo]. 

Last but not least, neutron and inelastic neutron diffraction results can be entirely 
interpreted by assuming a high fraction of boroxol rings; Johnson et a1 have concluded 
the rate to be 60% [ 1 I], Hannon et af give the evaluation of 80 f 5% [ 12, 131. 

Controversy around boroxol rings started with the publication of numerous molecular 
dynamics (MD) simulations in recent years [14, 15, 161. Various modelling methods of MD 
have been used, such as two-body potentials, and three-particle interactions with the bond 
angle maintained at 120" or 130". All of them, except one, predict the absence of boroxol 
units in the network, or rate at least a very small number. 

Figure 1. The boroxol group. 
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k.3 

k.4 

F i w  Z The different sheets of configmion space 
conraining all clusters of given sim N. 

In this article, we shall apply a simple statistical model of agglomeration to the vitreous 
boron oxide, in order to evaluate the number of boroxol rings. In the next two sections, the 
main theoretical ingredients of the model are presented. These are the set of rules of cluster 
agglomeration, the way to compute corresponding probabilities and the construction of the 
partition function. The results are shown and discussed in the fourth section. The number af 
constructed clusters increases so rapidly during the successive steps of agglomeration that we 
shall introduce what we call the multiplet approximation which will be explained in the fifth 
section. Due to this approximation, more precise results can be obtained, in particular for 
the boroxol rate. The last section is devoted to the structural analysis of molten B ~ O J .  We 
evaluate the temperature dependence of the maximal size of clusters coexisting at a given 
temperature in the glass-forming liquid. This investigation relies strongly on Walrafen's 
data [9]. 
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2. Description of the theoretical model 

Before we proceed with detailed calculations, let us expose the main lines along which our 
model is constructed, describing the purely qualitative picture that serves as the theoretical 
support. Although theories of irreversible thermodynamical processes are known, [ 171, they 
are too general to be of much use here. That is why we shall employ a simple model of 
agglomeration and growth introduced in OUT previous articles [18, 19, 201. 

The main idea of the model is based on the following simple observation. In the 
hot liquid many types of microcluster coexist in a dynamical equilibrium as long as the 
temperature is constant; some of them split into smaller entities, some agglomerate and 
grow a little bit, but on average the overall statistics remains constant, i.e. the probability 
of finding a cluster of given type does not vary, although the particular distribution OF the 
probabilities depends very strongly on local geometry and the energy cost of their formation. 
This equilibrium is broken as soon as the temperature starts to vary: as it decreases, the 
smaller clusters agglomerate producing bigger ones; the overall picture is that of a time- 
dependent distribution of different clusters, its centre of gravity drifting towards the bigger 
ones. At some moment-corresponding to what is observed as the glass aansition-the 
clusters attain their ‘critical size’, after which the statistical distribution of any characteristic 
quantity (in our case it will be the fraction of boron atoms trapped inside the boroxol rings) 
becomes stationary, i.e. attains its limiting value observed in the network as a whole. 

Our approach to the mathematical description of this process is based on the image 
displayed in figure 2 . We divide the configuration space of all possible clusters observed 
in the hot melt into a series of sheets, numbered from 1 to N,,,, each of them containing 
only the clusters of a given size k (k = 1.2, . . . , kmOz). 

The aim of this article is to establish the way in which the elementary gowth and 
agglomeration processes occur when the temperature slowly goes down during the glass 
transition. To do so, we follow the growth patterns of all possible agglomeration processes, 
starting with the simplest one, which is the creation of a single oxygen bridge between two 
boron atoms; during the next step of agglomeration two possibilities must be accounted 
for, namely, creation of a chain of three borons. or a ring containing three boron atoms; 
these two ‘pathways’ have different statistical weights due to the different number of ways 
(multiplicities) with which these arrangements can occur: besides, the relative weights 
should contain the Boltzmann factors corresponding to the different energy costs involved. 
After normalizing by the sum of the obtained weights we get the probabilities of each 
of these configurations: then, we can start again and obtain all the four-boron clusters, 
and so on. From the distribution of probabilities evaluated in this way, we can compute 
other characteristic features, e.g. the rate of the boron atoms becoming trapped inside 
the boroxol rings. Because the probabilities depend on the temperature via B o l t a x ”  
factors, we can also obtain the temperature behaviour of this characteristic. The overall 
normalization factors for the probability distribution of clusters can be used as the partition 
function, although they refer rather to the processes and not the states. We show that this 
approximation gives a reasonable description of the resulting structures and of the glass 
transition process as well. 

Let us explain our approach in a more detailed manner. 
A hot melt at constant temperature contains a lot of clusters of different sizes and shapes, 

although one can assume that there is a more or less sharp cut-off in size at some k,,(T), 
i.e. that the number of clusters bigger than k,.,(T) is negligibly small in a hot liquid. Of 
course, in a quasiequilibrium, at a given constant temperature, some of the clusters split 
into smaller units, while some of the smaller ones agglomerate giving bigger entities, but 
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on average the balance is maintained, and the mean distribution of clusters on the sheets of 
the configuration space remains unchanged. 

But let the temperature go down slowly, and the distribution of probabilities of finding 
a given number of clusters of given type on a kth sheet will also evolve; the lower the 
temperature, the greater the 'population' of clusters corresponding to greater values of k. It 
is quite obvious that when the temperature continues to go down, the centre of gravity of 
the overall distribution will also displace itself towards the sheets of greater k; at the same 
time, the cut-off size value k,,, is growing, too. 

This situation is similar to that of a mixture of different kinds of molecule with chemical 
reactions between them allowed to happen: there we do not know the chemical potentials 
of each species, which could have been used to produce the statistical sum. That is why we 
choose the alternative description based on the pathways, which produce the probabilities 
for each species without explicit introduction of a particular chemical potential. In the limit 
of growing k,,, the renormalizing factors of this procedure should be close to the big 
statistical sum. 

In order to apply this kind of non-standard statistical physics, we should be convinced 
that the system under study satisfies the following physical hypotheses. 

(1) The progression of the population of clusters from one sheet to another due to the 
agglomeration and growth is slow as compared with the kinetic energy exchange between 
the clusters (i.e. with the speed of phonons in the hot liquid). Therefore, although the whole 
process is off equilibrium, we may assume a thermodynamical equilibrium on each of the 
sheets, and use the Boltzmann factors there. 

(2) The clusters in the hot melt are in constant proximity, and their movements are not 
as rapid as the motion of the molecules in a gas; consequently, we shall assume that the 
probability of collisions is roughly constant, i.e. depends very weakly on the temperature, 
so that the most important contribution to the probability of a given agglomeration step is 
given by the statistical weight (i.e. the number of ways in which this step can be performed) 
and the Boltzmann factor depending on the energy cost of that particular process. 

(3) We shall consider the energies stored in a given cluster during its agglomeration as 
additive quantities, which is equivalent to supposing that the energy is locally conserved. 
This means that we can evaluate the probability of observing a given cluster by summing 
up all the agglomeration pathways that lead to its creation from elementary singlets, by 
multiplying the probabilities of each transition by corresponding statistical weights and 
Boltzmann factors. 

The non-standard character of our procedure can be illustrated as in figure 3. 
With this in mind, we can proceed further and start to evaluate the probabilities of 

all possible agglomeration pathways and their overall normalizing factors, which will be 
interpreted as successive approximations to quasipartition functions. 

3. Construction of multiplets and quasipartition function 

The model is based on the geometrical construction of all possible small- and medium-size 
clusters containing a given number of atoms (up to 15 borons and 20 oxygens), starting 
from the most elementary configuration for which there exists clear and unambiguous 
experimental evidence, i.e. the BO3 triangle, which will be called a singlet in the forthcoming 
construction [21]. During the agglomeration of the singlets, the boron atom and its three 
oxygen bonds form oxygen bridges with next borons. 

Although we can  safely assume that the network can be entirely tiled with these singlets, 
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rep ced by I 
- 
Figure 3. The altemative way of evaluating C,,. S. F, etc. 

the vitreous matrix of BzO3 which has undergone a glass transition can be tiled also with 
larger agglomerates produced by our construction, each step of agglomeration yielding 
larger clusters and a better approximation, because the final medium-range structures we 
shall produce obviously contain more significant information about the typical structure of 
BzO3 than the initial doublets and triplets. Whatever the construction step, contribution to 
the configurational entropy coming from a given cluster can be evaluated with a satisfactory 
approximation by computing the number of independent agglomeration pathways leading 
to that particular cluster. Besides the entropy contribution, we can assume that the energy 
stored in a given cluster can be treated as an additive quantity and can be evaluated by 
summation of the energies involved in each elementary step of agglomeration consisting in 
the formation of a new single oxygen bridge or of two simultaneous bridges (corresponding 
to the creation of a boroxol ring). 

We cannot exclude in this construction either the formation of a random network with 
BO3 triangles or a boroxol linked network, because the processes that lead to such structures 
are characterized by two unknown binding energies we shall evaluate later on. Each single 
oxygen bridge creation should represent the energy cost of El and each boroxol creation 
the energy E2. Starting from a BO3 singlet, we can create a doublet out of two singlets 
(figure 4) and exclude the possibility of formation of a two-membered ring (i.e. edge-sharing 
triangles), for which there is no experimental evidence in x-ray results, because they would 
produce in the diffraction pattern a sharp and characteristic peak which is not observed [3]. 
Therefore, the probability of the doublet after normalization is p z ~  = 1 and we can tile the 
whole network with such doublets. 

During the second step (1 = 2). two possibilities must be taken into account, 
i.e. formation of a pure chain or of a boroxol ring (figure 5). Besides the energies E1 
and Ez that characterize these two processes, the two triplets have a different multiplicity 
(degeneracy), which corresponds to the number of ways in which a given hiplet can be 
constructed. A boroxol group has the multiplicity 2 x 3 x 4 = 24, whereas for a chain we 
count 3 x 4 = 12. Indeed, for the latter, there are 12 different ways to join a singlet with 
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A A +  + P 2 h  

Figure 4. Fmm a singlet to a doublet pzn. 

a doublet via a single oxygen bridge, if one labels the bridges (e.g. I-!', l-k', l-m', etc) 
(figure 5 ) .  

PZA 

P3n 

Figure 5. The construction of viplets and quaddruplets. starting from the doublet pzn,  

P4AA 

Pam 

P4nn 

The simplest way to evaluate the probabilities of these two structural slates with the 
corresponding binding energies El and Ez is the description by means of canonical ensemble 
summations: 

where el = exp[-Et/kT] and e2 = exp[-Ez/kTl. 
The next step leads to three different multiplets: their multiplicities and the Boltzmann 

factors el and e2 of each pathway of production are shown in figure 5 and the normalized 
probabilities are given below: 

We can go on with this construction and for each new step produce a set of multiplets with 
the corresponding probabilities. Each new step I costs at least one new binding energy, so 
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that the stored energies contained in a given multiplet are given by the following accessible 
states: 

Note that this construction depends only on the energy difference E1 - E2 (via the factor 
ez/el), and that the uadruplets displayed in figure 5 involve only two characteristic energies, 
E:” = 3E1  and E! = 2El +E*. We have followed the agglomeration up to the 10th step 
yielding 288 non-redundant multiplets with 11 boron atoms each (table 1). 

Table 1. The number of multiplets at each step of the agglomeration process, 

Step Number of 
1 multiulels 1 boroxol 2 boroxols 3 boroxols 

Number of multiplets wilh: 

~~ ~~ ~~ 

- - - 0 1 
1 1 

2 2 I 
3 3 I 
4 4 2 
5 9 4 1 
6 14 6 2 
I 31 14 6 
8 62 30 13 1 
9 135 60 34 4 

10 288 129 14 I5 

- - - 
- - 
- - 
- - 

- 
- 
- 

Some of them contain one, two or three boroxol rings; some others conkain no rings at 
all and are composed of pure or ramified chains. Rings with more than four boron atoms 
should also be expected in our construction but we have neglected them for the sake of 
simplicity. Nevertheless, such rings can be represented by a pure chain, because it seems 
reasonable to assume that the energetic cost of formation of such rings is approximately 
twice the energy E1 (during the lth step, a pure chain with (1 - 2 )  borons is ‘closed’ by 
a BO3 triangle). Such an assumption becomes more and more realistic if one considers 
rings of growing size (the effect of the ring decreases with its size, i.e. the influence of a 
three-membered ring is more significant than the one produced by a 12-membered ring). 
Therefore, the main structural influence should be produced by the boroxol rings represented 
by E2 state energies; two examples of clusters with 11 boron atoms are given in figure 6. 
The first one is a typical example of an artificial ring (or pure chain), whereas the second 
one contains three boroxol groups. 

As the probabilities of each multiplet are constructed in the same way as the probabilities 
of ‘classical ensemble state’ energies with Boltzmann factors and their corresponding 1 
degeneracy, the overall normalizing factors which appear in equations (1)-(5), but also 
in the forthcoming steps of agglomeration, should imitate the behaviour of a statistical sum, 
i.e. a partition function which uses different combinations of the energies El and E2 stored 
in a given cluster (6), as classical ensemble state energies. 

Nevertheless, such a computation would be very approximate because the degeneracy 
of a given energy state would be much higher than the ordinary statistical weight of 
agglomeration. In other words, if one takes care only of the states defined in (6), one does 
not make any difference among multiplets with the same stored energy (e.g. the quadruplets 
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0 0 

FI 
E!,:’ = 10E1. (b) A cluster containing hree boroxol rings, Swte energy E?’ = ~ E I  + 3 E z .  

re 6. (a) A pure chain which could eventually close in order to produce a ring, state energy Y 

of figure 5 p 4 ~  and p 4 ~ 1  have the same energy state, which is 3Er) .  That is why the 
‘partition function’ Z(m) should not refer to an ensemble of momentaneous states of the 
same system, but rather to an ensemble of ‘evolution processes’ (or pathways) that lead to 
the set of all clusters of given size m. In this sense, the obtained statistical sum does not 
refer to a system in an equilibrium thermodynamical state, but rather enables us to use a 
similar technique for a non-equilibrium irreversible process such as the glass transition we 
want to describe. 

We are conscious of the non-standard character of this procedure and of the fact that the 
formal expressions for the thermodynamical quantities such as C, and S do not correspond 
to the real values of these functions measured experimentally during the glass transition or 
derived from the classical partition function, were we able to compute it. Nevertheless, we 
believe that the estimations obtained in this manner tend to the realistic ones with growing 
length of pathways taken into consideration, which corresponds to the extension of the 
fictitious phase space of the melt to include more and more sheets displayed in figure 2. 
One of the reasons to believe that it is so comes from the inspection of the relative weight 
of the contribution of the Nth sheet, which can be evaluated roughly from the number of 
species of clusters of size N (see table I), where we see that due to the geometric character 
of the progression in number of configurations, the relative weight of the last sheet is roughly 
equivalent to the weight of all the previous sheets (N - 1, N - 2, etc). 

We believe that the progression of clusters from sheet to sheet corresponds to what 
happens in the hot melt during glass transition, as described in section 2. 

Another reason which seems to us to corroborate the validity of the approach is that our 
obtained thermodynamical functions computed from our quasipartition function Z(m) exhibit 
a characteristic feature, i.e. the slope of C, at the glass transition temperature is increasing 
with growing size of clusters (figure 8) and for an infinite size, we expect an infinite slope 
in agreement with the usual behaviour of C,. 

Although correlations in the configuration of neighbouring cluster pairs should be 
sensitive to their shapes and space-filling properties, we believe that, at the level of 
approximation we are using here, the steric hindrances are not very important in determining 
the glass transition temperature and the behaviour of C,. The geometrical properties of 
the clusters become crucial while discussing the behaviour of density or viscosity during 
glass transition; the behaviour of C,, on which our model is most dependent, is much 
less influenced by the steric exclusions that can be observed in  the formation of bigger 
clusters. Therefore, although one may be concerned that the ‘book-keeping’ of pathways 
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is not so evidently correct, because the agglomeration rates, besides statistical weights 
and Boltzmann factors, could depend on correlations in the configurations of neighbouring 
cluster pairs, we believe that these correlations introduce only minor modifications into the 
thermostatic location of the glass transition. It can be argued a posteriori that the steric 
hindrances coming from the big closed chains (like figure 6(a)) are negligible because the 
rate of formation of these chains is very low as compared with the boroxol rings, which 
geometrically behave all in a quite similar manner. 

Now we are ready to evaluate the successive approximations to the quasipartition 
function. For example, for the second step (which yields the triplets psa and P , ~ ) ,  the 
panition function has the simple form (see equations (1) and (2)):  

Z(2) - 12e-E1’kT + 24e-E2/kT. (7) 
For the third step, the construction is quite similar: 

2 

Z(3) - n QL3’ = 9e1(15el + 2 4 ~ ) .  (8) 
or=] 

For further steps, the partition function can be written in the same way: 

where N(I ,  is the initial number of multiplets (clusters) of the step 1 and N ~ I + I )  the number 
of created multiplets during this step, Mg+,) the atomic mass of a structure with I +  1 boron 
atoms and Qy’ the normalizing factor of the pathway labelled or (or = 0,. . . , Nil));  k B  
stands for the Boltzmann constant. The first factor results from the usual integration of the 
kinetic energy term of the partition function (contribution of classical harmonic oscillators). 
One can now evaluate the normalized internal energy of a given step 1:  

and the heat capacity C,, by the derivation with respect to T :  

4. Results 

We shall study the system of clusters constructed above and its thermodynamical functions 
U,, and Cj)  in the vicinity of the glass transition, although it seems probable that the 
heat capacity should take into account other contributions (e.g. the rotational or vibrational 
modes’ contribution to the kinetic energy terms in the partition function); but we shall 
assume that the most important contribution to the behaviour of C,?(T) is fairIy well 
approximated by the second and third terms of equation ( I  1). 

Although the characteristic quantities of a liquid such as  or^, C,, or KT (bulk 
compressibility) might be discontinuous at Ts suggesting a manifestation of a second-order 
or a more complex phase transition, we can nevertheless expect the presence of an inflexion 
point in the curve of the heat capacity at this temperature. which should reflect what is 
generally observed i n  the C,(T) curve for various glass-forming systems [22] :  
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This simple requirement will be used in order to f i t  the parameter ( E ,  - E2) of our model 
and to satisfy equation (12). Nevertheless, the glass transition temperature is a function of 
the thermal history of the melt which is highly influenced by the cooling (or quenching) 
rate. The usual glass transition's temperature range for B203 is known to be approximately 
470-530 K. Trying to f i t  the energy difference E' - E2 in order to satisfy equation (12). 
we obtain different values following the choice varying from T, = 470 K to 530 K, which 
suggests that our value El - E2 might need a correction whose value would depend on the 
cooling rate, but which can be neglected as long as the cooling rate is slow enough in order 
to influence in the same way all particular agglomeration processes taken into account. 

For Tg = 470 K, we obtain the best fit for steps (3)-(10) for 
El - E2 = 0.200 eV = 4.605 kcal mol-' (13) 

and for Tg = 530 K 
El - Ez = 0.260 eV = 5.986 kcal mol-'. 

The corresponding normalized internal energy and heat capacity curves based on these 
numeric values of E ,  - E2 are plotted in figures 7 and 8 for the consecutive steps of 
agglomeration. 

Figure 7. Normalized internal energy curve U p ) ( T )  (in eV) with E l  - E2 = 0.26 eV. 

The energetic difference El - Ez obtained here is in fair qualitative agreement with 
previously cited theoretical and experimental estimates. 

4.1. Comparison with other estimates 

Snyder has estimated by means of ab initio quantum mechanical calculations the energy 
difference between B q  groups in boroxol rings compared with the energy of BO3 groups 
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Figure S. Normalized heal capcity c w e  (reduced units) for different steps of agglomention 
( I  = 8 (curves a and b) and I = 9 (curves c and d))  with El - E2 = 0.20 eV and 
El - E2 = 0.26 eV. The plot concerns only the second term of equation (11). which is 
the most significant. 

in a random network. Although the first rough approximation gave a relatively low value 
of about A E  = 1.5 kcal mol-', the corrections taking into account the electron correlation 
energy raised this value up to 6 kcal mol-' [23]. 

Krogh-Mae has proposed the stabilization energy of a boroxol unit to be roughly 
8 kcal mol-' after discussing the reorganization of BO3 units from boroxol rings into a 
random network of BO3 triangles [%I. 

Walrafen and co-workers have proposed the value 6.4 f 0.4 kcal mol-', which has 
been deduced from the investigation of vitreous and molten B203 via computation of the 
dependence of the integrated Raman intensities on the temperature [9]. 

The mean value obtained by our statistical model (5.3 kcal mol-') is in  very good 
agreement with the most recent result which has been obtained by the extended work of the 
latter cited authors. Indeed, they have estimated the energy of formation of a boroxol unit 
as being roughly equal to 5.0 kcal mol-' [lo]. 

4.2. The boroxol rate 

With the energy difference established and the glass transition temperature fixed, we can 
compute the fraction F(I) of boron atoms trapped inside the boroxol rings by summing the 
probabilities of clusters containing this characteristic structural group, with an appropriate 
weight, e.g. for the configuration p 4 ~ ~  of figure 5 or 6 for the structure displayed in figure 
6(b), etc. The results exhibit behaviour converging to the limit value of 80%; the continuous 
curve extrapolating the behaviour of F(() versus I (from 1 to 10) is plotted in region I of 
figure 9. The obtained rate is consistent with various theoretical and experimental results 
which have been presented in the first sections of this paper, especially with the models of 
Jellison et Q1 who suggested that 83% of boron atoms are contained in boroxol rings [7] 
and Hannon et aI (80%) [12, 131. 

The evaluation of the boroxol rate and its dependence on T also shows that for T = T, 
the variation of F(/) is very low; note that this happens whatever the agglomeration step we 
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are considering. When the liquid gets frozen at T,, all structural recombination of clusters 
is stopped (or at least becomes negligibly slow); this is confirmed by our computation, in 
which our functions F,,, remain constant from T = -200 “C up to T, which is consistent 
with the experimental data of Walrafen 19, IO]. 

Nevertheless, at this stage of agglomeration, the amplitude of the variations in the 
boroxol rate computed for different steps, even for the last ones (steps 9-10 in figure 9) 
remain quite important. Therefore, it seems necessary to go farther in the agglomeration 
process, in order to evaluate the boroxol rate from larger clusters in a more precise and 
conclusive manner. 

5. Construction of larger clusters: the multiplet approximation 

We have already seen that the agglomeration steps could provide various reasonable pieces 
of information from the analysis of structures containing up to 11 boron atoms. For the 
ultimate step of agglomeration ( I  = 10) that we were able to follow exactly, we have 
288 non-redundant multiplets, and it seems quite impossible to perform the analysis of the 
agglomeration process further by direct joining of BO3 triangles ‘by hand’. Indeed, the 
forthcoming step I = 11 would provide at least a thousand non-redundant multiplets with 
12 boron atoms which would prove very difficult to follow without important redundancy 
errors. Luckily enough, at this stage of the agglomeration (1 = lo), we can compute all 
the probabilities of all 288 multiplets by inserting the T, value and its corresponding best 
fit for the difference El - E?. (By the way, we have checked that there is no significant 
variation of probability between the two values of T,.) It is noteworthy that among the 288 
multiplets, only very few are really significant, i.e. have a non-negligible probability. For 
example, the multiplets displayed in figure 6 have very different probabilities. The pure 
chain shown in ( U )  has the probability of whereas the second structure in (b), appears 
with a 37.8% rate! 

We shall denote by ‘multiplet approximation’ the method which keeps only the most 
representative multiplets of a step 1 and starts a new agglomeration by direct joining of BO3 
singlets to these multiplets only. Of course, the sum of the probabilities of the thus-reduced 
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number of multiplets should always be greater than 99% in order to minimize the error 
produced by the approximation. Anyhow, shctures  with a very low probability (such as 
the one shown in figure 6(a)) will produce pathways with infinitesimal probabilistic weight, 
unimportant for the construction of larger clusters during forthcoming steps, whereas the 
structures whose development we decided to follow will continue to lead to the really 
meaningful ones. 

In order to test the validity of such an approximation, we have started the multiplet 
approximation at step I = 9 which has a population of 135 multiplets (table I). With the 
value E ,  - E2 obtained in (13) and (14), only five of these multiplets represent 99.11% of 
all the probabilities (table 2). We can now realize a new step of agglomeration (called IO*), 
computing the probability of the 12 structures with 11 borons, obtained from the five most 
important multiplets of the previous step, and compare them with the probabilities of the 
direct computation based on the 288 multiplets of step IO. 

Table 2. The number of different swctures obtained by the multiplet approximation compared 
to the directly computed ones. 

Number of multiplets with 
Step Number of 
I multiplets 2 boroxols 3 bommla 

9 135 34 4 
5 3 2 

10- 12 7 5 
10 288 74 15 

The very low difference in the probabilities of multiplets obtained via the approximate 
and exact way of agglomeration (IO and IO*) confirms that such an approximation is valid, 
as long as one retains the multiplets that would total about 99% of all the probabilities 
(table 3). Having tested the validity of this approximation, we can now confidently apply it 
further and continue the agglomeration process by constructing the multiplets with 12 boron 
atoms, starting from the six most representative multiplets at step 10. A second multiplet 
approximation can be realized in  order to obtain structures with 15 boron atoms during the 
steps labelled 13** and 14** (table 4) if we start from the 11 most representative clusters 
with 13 boron atoms (which represent 99.10% of all the probabilities). 

With these new agglomeration steps, we are able to compute again the fraction of borons 
inside boroxol rings, following the same scheme as explained above. The result is plotted 
in region II of figure 9 and shows a much better convergence for steps 11" to 14** to 
approximately 84% which remains in good agreement with the value established by Jellison 
et af 171 and stays inside the evaluation range of Hannon and co-workers 112, 131. The 
variation of Fto with respect to I is also decreasing, as shown in figure 9. 

6. The microanalysis of glass transition 

Let us retum to the analysis of the agglomeration process, trying now to evaluate its 
time dependence, i.e. the way in which the characteristic features, that can be evaluated 
statistically on the microclusters considered above, approach their limit values evaluated in 
the resulting network after the glass transition has been completed. This will enable us to 
analyse the evolution of the agglomeration process as a function of time and temperature, 
assuming that the latter may be considered as a linear function of time. 
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Table 3. The multiplet approximation test: the probabilities of the 12 most significant clusters 
obtained with the approximation during step IO' compared to the most representathe multiplets 
obtained by direct joining (step IO). 

Dircct computation hlultiplet approximation 
l = l O  1 = 10' 

0.1748 

0.1743 

0.3782 

o.oas9 

0.1740 

0 

0.1740 

0.3780 

0.0852 

0.14i2 0.1472 

0.0306 0.0306 

Table 4. The number of suuctures sharing from I I to IS boron atoms, by use of the two 
multiplet approximations. 

Step Number of 
I multiplets 2 boroxols 3 boroxols 4 boroxols 5 boroxols 

Number of multiplets with 

- - 10 288 14 15 
6 1 5 

11' 17 4 I 1  2 
12' 39 8 26 5 

8 3 
13'' 32 - 23 10 
14'' 93 - 62 29 2 

- - 
- 
- 
- - I I  - 

We have at our disposal the statistics of microclusters of all possible types containing up 
to 11 boron atoms, and a good approximation up to 15 boron atoms per cluster. The main 
question to be answered now is: what is the relative weight of the full ensemble of clusters 
containing the given number of boron atoms among all the clusters present in the melt, 
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and how does this distribution of probabilities evolve with time (or, what is roughly the 
same, with temperature)? In other words, we would like to know how the whole population 
of multiplets bavels from one sheet of the configurational space to another, as described 
qualitatively in the second section of this article. We shall show how the quasigeometric 
progression of the number of different types of multiplet with growing 1 finds its image in 
the exponential behaviour of the average cluster size as a function of temperature, and in 
the exponential approach of the boroxol ring statistics towards its limit value. Incidentally, 
it will give us an idea of the critical size of clusters, at which all the significant statistics are 
almost identical with the overall statistics that characterize the 'frozen' network resulting 
from the glass aansition that has definitively taken place. 

Although in the pure B203 glass we have only one characteristic parameter at our 
disposal, i.e. the rate of boron atoms contained in the boroxol rings, it can be used in order 
to decipher the unknown statistics of clusters of given type. 

Walrafen et al give the experimental curve describing the temperature dependence of 
the integrated intensity of the sharp 808 cm-' peak (attributed to the boroxol breathing 
mode) which is proportional to the boroxol rate F ( T )  [9] and has been modelled by these 
authors with the following function: 

where Bo is the boroxol rate at Tg. With the characteristic energy differences established 
above, our model enables us to compute the boroxol rate F(k, averaged over all clusters of 
a given size k ;  this quantity is also a function of temperature T which enters via the set of 
Boltzmann factors contained in the expression of F(A). 

Now, in order to produce a more realistic picture, we must take into account that the 
melt contains a mixture of clusters of all sizes up to some N,, that grows with time as the 
temperature goes down. The problem is how to evaluate the relative part of the clusters of 
size k ,  for k = 1,2 ,  . . . , What is helpful here is the following simple observation: if 
the agglomeration pace is roughly the same at any point of the melt, it means that it takes 
the same characteristic time for a cluster of size k to transform into a cluster of size k + 1. 
This means in turn that the ratio of the number of clusters of size k + 1 to the number of 
clusters of size k is roughly given by the ratio of the numbers of possible multiplets given 
in table 1. The numbers Nk of different multiplets containing k boron atoms grow as 1- 
1-2-349-14-31-62-135-288-. . ., which is very close to the geometric progression with 
the constant ratio close to 2.13; if we weight the numbers of multiplets with the numbers of 
boron atoms contained in them. i.e. if we consider the series kNk, the progression is even 
more impressive. 

One should not forget the crucial dependence on the energies displayed in the Boltzmann 
factors, because the result is very sensitive to their variation. This could easily be checked 
by examining the changes in figure 10 when one varies the energies E, ,  even slightly. The 
resulting curves (figure 10) depend also on the characteristic energies. 

This means that, to a first approximation at least, the most important contribution to 
any statistics will come from the last and biggest type of cluster. That is the reason why 
we propose to evaluate theoretically the boroxol rate with a simple formula 

(16) 

which will give a good approximation if N,,,,, could be evaluated as a function of 
temperature. 
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Figure 10. The experimentid curve of Walrafen ef 01 19) and the curves r ~ ~ ~ " , , ( k e T )  with 
El - E2 = 0.20 eV. F ( k s T )  h a  been plotted with the limit value Bo = 0.84 in order to be 
consistent with 8 1 5 ,  and figure 9. 

But this is exactly what we can get if we plot on the same graph all the curves Fume, (ksT)  
and the experimental curve F(kaT)  of Walrafen er a/  with the limit value Bo = 0.84 (figure 
10). The intersection points between the theoretical curves corresponding to different values 
of N,,,,, and the experimental curve tell us at what temperature the approximation with a 
given NmOx is the best; this in turn can be read as the dependence of N,,,,, on T (figure 

The points displayed in figure 1 l(a) are very well iterated by an exponential with a 
1 W ) .  

constant: 

ksT = A + B e-hNmr (17) 

with A = 0.0628 eV, B = 0.0966 eV, A = 0.1897 for the choice 13. We see that when 
the maximal size of clusters considered attains 15 borons, the corresponding temperature is 
close to 0.07 eV, i.e. still above the real glass transition temperature. 

In parallel, we can draw the development of the boroxol rate with temperature by 
projecting the same intersection points on the vertical axis of figure IO; this gives another 
exponential approach to the limiting value of 84% (figure ll(b)). We believe that this 
exponential behaviour is also reflected in the exponential (i.e. very rapid) behaviour of other 
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Figure 11. (a) The dependence gf T (in eV) on N,,, lhe maximal size of a cluster in the 
considered set, with El - E2 = 0.20 eV. (b) The boroxol rate as a function of Nmm. The 
horizontal line represents the limit value of 0.84%. 

interesting parameters, above all, of the viscosity, which should have a typical Arrhenius 
behaviour like similar strong glass-forming systems [25]. 

7. Conclusions 

The fact that with a simple thermostatistical model, based on the topological construction 
of large clusters, we can obtain the usual shape for CJT) and U ( T )  curves, the realistic 
values for the energy of creation of a boroxol ring (5 kcal mol-') and a very satisfying 
fraction of boroxol rings (84%). Besides these typical results for vitreous and molten Bz03, 
this paper is a first attempt at a model in order to give a microscopic description of the glass 
transition. These are the positive features of the model that will encourage us to perform a 
similar analysis on other glass-forming systems, including Si02 [26]. 
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